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Prediction of mean square radius of gyration of tree-like polymers
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Abstract

This paper describes a kinetic method to predict the z-average molecular mean square radius of gyration of tree-like polymers formed by
irreversible reactions, assuming Gaussian chains. It is based on the population balance equations for the two-sided molecular distributions of
pendant chains associated with every chemically distinguishable kind of bonds. An automated method for the solution of those equations is valid
both before as well as after gelation for complex kinetic schemes. Examples of its use are presented with polycondensation systems leading to
hyperbranched polymers, the anionic polymerization of mono- and divinyl monomers and a radical polymerization with terminal branching and
transfer to polymer.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. The statistics of the configurational structure of
branched polymers

The calculation of the most relevant statistics of the counts
of chemical groups and sequences in polymer molecules or
fragments of them is a simpler problem which must be solved
before trying to undertake a theoretical prediction of confor-
mation dependent physical properties. Chemical groups in
polymer molecules and non-polymer molecules will be named
Aj with 1� j� NA and their counts in a polymer molecule or
fragment belong to a vector a ¼ ½a1;.; aNA

�; molar concentra-
tions of groups and other species are named [Aj]. Only a sub-set
of NP groups will be present in polymer species (such as the
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repeating units RUs written also as Xk with k ¼ 1;.;NX).
The other species will include monomers in chain-growth
polymerizations, initiators, transfer agents and similar.

Polymer species Pm, which differ by the counts of groups
and the way they are connected, will be labelled by an integer
index m.

Polymer molecular size distribution (MSD) is considered
synonymous of the distribution of numbers of molecular spe-
cies with respect to counts of groups. Its probability function is
the normalized concentration of polymer [P(a)]/[P] where [P]
is the overall polymer mole concentration.

The number of position isomers increases very fast with the
counts of groups and it is not possible in practice to exhaustively
follow the concentrations of all of them except up to a few units,
so that Monte Carlo methods have some intrinsic usability ad-
vantages on dealing with these chemical systems. Nevertheless,
some of these difficulties can be overcome with suitable math-
ematical techniques, such as the counting method (derived from
earlier G. Polya’s work) used by Stockmayer for computing the
MSD for equilibrium non-linear tree-like polymers [1].
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The enumeration procedure at the base of those results
becomes quite difficult to use with more complex chemical
systems. A significant progress has been achieved through the
introduction of the theory of branching processes (TBPs) [2]
by Good [3] and Gordon [4]. A key concept is the use of
generating functions (GFs) of the MSD. Thus, to the MSD
of the polymer molar concentrations [P(a)] corresponds the
GF:

GðsÞ ¼
XN
a1¼0

.
XN

aNA
¼0

sa1
1 ;.; s

aNA
NA
½Pða1;.;aNA

Þ� (1)

and a probability generating function (PGF):

Ĝ
�
s
�
¼ GðsÞ=½P� (2)

A classical example [4,13], which will be discussed along
this introduction in order to illustrate the main ideas behind
methods for predicting physical properties of polymers, is
the step-growth polymerization of a symmetrical star-like
monomer with f end groups A, XAf, with negligible formation
of finite-sized loops (except in the network, if it exists). The
repeating units in the polymer molecule are the monads
A0;.;Af , where the index j in Aj represents the number of
end groups A which have been converted. The overall number
of RU per molecule is x ¼ a0 þ/þ af and it is convenient to
consider a scalar distribution with respect to x, with a GF
which can easily be related to the vector distribution with
respect to all group counts:

GnðsÞ ¼ Gðs;.; sÞ (3)

The related normalized weight MSD with GF ĜwðsÞ is also
often needed:

ĜwðsÞ ¼
XN
x¼1

sxx½PðxÞ�=½X� ¼ dGn

d log s
=½X� (4)

where [P(x)] is the molar concentration of polymer molecules
with x RU and [X] is the overall molar concentration of RU.
Note that Ĝwð1Þ ¼ 1 when no polymer network is present.
Otherwise, Ĝwð1Þ is the fraction of RU belonging to the sol.

Since the polymer molecules are trees, if chemical equilib-
rium holds, the ‘‘forest’’ may be described according to TBP
through the two related probability generating functions
(PGF) F0(s) and F1(s):

� F0ðsÞ ¼
Pf

m¼0 p0
msm is the PGF of the counts of RU con-

nected to an RU at the root of the tree (generation zero),
� F1ðsÞ ¼

Pf
m¼0 pmsm is the PGF of the counts of RU con-

nected to an RU not at the root of the tree (generation one
and above),

where pm
0 and pm are, respectively, the probabilities that a root

or a non-root RU are connected to m of other RU. As the frac-
tions of units connected either to root or to non-root units are
related through pm ¼ ðmþ 1Þp0
mþ1=

Pf
n¼0 np0

n, the two PGFs
above are related through Eq. (5):

F1

�
s
�
¼ dF0

ds
=

dF0

ds js¼1
(5)

These fractions can be computed knowing the equilibrium
constants and the concentration of by-product [13]. The
equilibrium assumption leads to the PGF of the whole pop-
ulation of polymer molecules in terms of weight MSD,
obtained by solving the two algebraic equations (Eqs. (6)
and (7)) below:

u¼ sF1ðuÞ (6)

Ĝw

�
s
�
¼ sF0

�
u
�

(7)

No gel exists if there is no root between 0 and 1 of the
above equation when s¼ 1 besides u¼ 1 (the trivial solu-
tion). In that case, the root lying on the same branch as
the trivial solution should be chosen and next substituted in
Eq. (7) (otherwise, see [32,13] for a more general relation).
From the above PGF average degrees of polymerization are
easily found by derivation (or contour integration) with re-
spect to s on s¼ 1, and numerical or even analytical expres-
sions for the MSD are found by its inversion with appropriate
methods.

Most early theoretical works have considered rather simple
polymerizations at chemical equilibrium or step-growth poly-
merizations starting from the monomers in batch reactors,
which can be well described by the TBP. However, substitu-
tion effects and the subsequent time correlations between
reactive group formation, and also the use of semi-batch or
continuous stirred tank reactors (CSTRs), are better dealt
with using population balance equations (PBEs) which take
roots in early works by Smoluchowski [5e7]; note they
have also been discussed in Stockmayer’s seminal paper [1].
Its application to more complex non-linear polymerizations
has been presented in several papers by Kuchanov and collab-
orators [8e11] (see also the review by Kuchanov et al.
concerning step-growth polymerizations [12]).

Still for the same polymerization scheme of XAf as consid-
ered above, the kinetic treatment as presented in Ref. [13]
starts by defining rate constants ~kij for the transformations of
RU according to Eq. (8):

AiþAj!
~kij

Aiþ1þAjþ1 0� i; j � f � 1 (8)

For a batch reactor starting from the monomer and with
negligible volume change (and so [X] should remain constant),
the PBE of polymer species with counts of RU a0;.; af in
terms of the GF of the normalized distribution:

Ĝ
�
s0;.; sf

�
¼
XN
a0¼0

.
XN
af¼0

sx0
0 ;.; s

xf

f

�
P
�
x0;.; xf

���
½X� (9)
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can be written as Eq. (10) below:

vĜ

vt
¼
�
X
�Xf

i¼0

Xf

j¼0

~kij

�
� pi

vĜ

v log sj

þ siþ1sjþ1

2sisj

vĜ

v log si

vĜ

v log sj

�

Ĝjt¼0 ¼ s0

½X��1dpi

dt
¼ pi�1

Xf�1

j¼0

~ki�1;jpj � pi

Xf�1

j¼0

~kijpj

pijt¼0 ¼ di0 (10)

A solution of Eq. (10) can be found using the method of
characteristics [11,13]. That solution can be recast in such
a way that the results obtained by this rigorous kinetic treat-
ment of irreversible polymerizations can be interpreted in
terms of the TBP, provided that each monad Ai is labelled
with the times q0;.; qi�1 of the disappearance of the end
groups which were attached to it. Therefore, the polymeriza-
tion model is reformulated as an age-dependent branching
process. A set of f integral equations [12e15] is obtained:

uiðqÞ ¼ sF iðq; uÞ i¼ 0;.; f � 1

F iðq; uÞ ¼
Xf�1

j¼0

pijðqÞ
dFð0ÞðuÞ

dujðqÞ
=

dFð0ÞðuÞ
dujðqÞ juðqÞ¼1

pijðqÞ ¼
~kijpjðqÞ

½X�
Pf�1

j¼0
~kijpjðqÞ

F ð0Þ
�
t; u
�
¼
Xf

i¼0

Z
.

Z
P iðt; q0;.;qi�1Þ

Yi�1

j¼0

uj

�
qj

�
dqj

P iðt; q0;.;qi�1Þ ¼ exp½�IiðtÞ�
Yi�1

j¼0

nj

�
qj

�
fj

�
qj

�

IiðtÞ ¼
Zt

0

fiðqÞdq

niðqÞ ¼ exp½Iiþ1ðqÞ � IiðqÞ�

fiðqÞ ¼ ½X�
Xf�1

j¼0

~kijpjðqÞ (11)

where the introduced variational derivatives d/duj allow
a more compact writing of the integrals defining the F i and
show the analogy with the equilibrium branching process.
The sought GF ĜwðsÞ in terms of the overall number of RU
x ¼

Pf
i¼0 xi is obtained through:

Ĝw

�
s
�
¼
XN
x¼1

xsx½PðxÞ�
½X� ¼

Xf

j¼0

vĜ

v log sj jsj¼s

¼ sFð0Þ
�
u
�

(12)
This interpretation proves to be quite useful in the predic-
tion of elastic properties of polymer networks [14,15] and of
average properties of branched molecules.

Although very powerful and theoretically appealing, this
approach faces some usability problems as soon as more com-
plex kinetic schemes have to be tackled, since it is not straight-
forward to obtain (and to solve) the integral equations
describing the equivalent branching process as done above.
Some modifications have been incorporated in the above pre-
sented kinetic method by the present authors in order to allow
an easier application to complex systems, which will be dis-
cussed later, as well as an extension for computing the average
radius of gyration (not valid for other physical properties),
which is the main goal of this paper. So, it is worth trying
some other totally different approaches for the prediction of
MSD of branched polymers.

As already mentioned, the presence of a huge number of
chemical isomers makes Monte Carlo simulation an attractive
alternative for attacking most real problems, in which forma-
tion of loops by intramolecular reaction and molecular frag-
mentation by reversible reactions puts serious problems for
the development of other methods. Nevertheless, in order to
avoid a high computational effort when very fast and slow
chemical reactions are simultaneously present, implementa-
tion of Monte Carlo simulation of these systems is not
straightforward and therefore some simplifying approxima-
tions had to be done in order to obtain practical results. Hence,
approximations such as considering radical polymerizations to
be transfer dominated are often considered when Monte Carlo
method is applied [16].

Galerkin finite-element method has been quite successful in
the past decade for obtaining polymer MSD for simpler kinetic
schemes, mainly with one-dimensional distributions, for
which the commercial package PREDICI excels, but faces
lots of difficulties close to or after gelation [17]. It has also
more recently been used for two-dimensional (and even
three-dimensional [18]) distributions; there is no doubt that
its predictive power is comparable to Monte Carlo methods
and others for this exact purpose. Still, the accurate prediction
of moments is not always straightforward, since it requires
a fast convergence of the underlying approximation by finite
elements and expert knowledge is often needed to achieve sat-
isfactory results.

Since more than one decade ago, the authors have been de-
veloping a tool for dealing with general non-linear irreversible
copolymerizations avoiding the tedious and error-prone writ-
ing of PBE for each new polymerization system [19]. A gen-
eral procedure for solving the resulting partial differential
equations by the method of characteristics is a key point in
this approach. More recently, its interest has considerably
grown as the severe numerical difficulties found with radical
systems could finally be overcome [20e24]. A comparison
of the predictions of average molecular weights of this method
with legacy pseudo-kinetic method for radical polymerization,
Monte Carlo simulation, different versions of the method of
moments and with numerical fractionation, can be found in
some of the aforementioned works [20,22,23]. Successful
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calculation of MSD before and after gelation by this method
has already been presented using a non-linear radical polymer-
ization as an example [23]. Recently, this approach was also
extended to the calculation of sequence length distributions
for non-linear irreversible multicomponent polymerizations
[25].

1.2. The prediction of physical properties of branched
polymers depending on their conformation

The Gaussian chain model for polymer chains describes
polymer molecules as a set of beads attached to massless freely
rotating rods [26] or springs. The prediction of many physical
properties becomes mathematically tractable, and in spite of
this huge idealization, a fairly good agreement with experimen-
tal results is observed. The effect on polymer properties of the
molecular expansion in good solvents through the excluded
volume effect [27,28] can be taken into account by using a per-
turbation method [35], or by a simpler independent modeling
not taking into account the detailed molecular structure. The
direct prediction of physical properties when the excluded vol-
ume effect is very large is a difficult problem; some results
have been obtained using Monte Carlo simulation in cubic or
planar lattices [29] for simple random branched polymers.

Graph theory provides a powerful means to describe the con-
figuration and predict sizes of single polymer molecules [30].
But if instead of single polymer species, the goal is to carry
out predictions for random mixtures as formed by polymeriza-
tion, the corresponding problem turns out to be also tractable,
specially when tree-like molecules (or with a limited amount
of rings) are considered. The crux is the generalization of the
statistical descriptions of polymer molecules as presented in
the previous sub-section, which lead to predictions of physical
properties of interest through averages over sets of isomers.

Using light scattering, it is possible to measure the molec-
ular radius of gyration as a time-average for the set of the
several possible molecular conformations. Therefore, an im-
portant scientific goal consists in its theoretical prediction.
We will start by considering an arbitrary molecule Pm de-
scribed by the Gaussian chain model with x¼NmX point-like
RU with position vectors rk; k ¼ 1;.; x, connected by
NmZ¼ x� 1 freely rotating rods with equal length b. We will
refer to these rods or elementary Gaussian chains as ‘‘links’’,
since they can contain several chemical bonds.

In later sections, different lengths of links and non-zero
sizes of RU will be allowed. The RU Xmk is supposed to have
a molecular mass Mk

X and the overall molecular mass is Mm.
The instantaneous radius of gyration Rgm of such an ideal-

ized molecule is the standard deviation of its space distribution
of mass, which can also be written as:

M2
mR2

gm
¼
XNmX

k¼1

XNmX

l¼kþ1

MX
k MX

l jrk � rlj2 (13)

It will be more convenient to use an alternative relation de-
rived from Kramers’ work [26] (Eq. (14)). Since the molecule
is tree-like, if a link Zmn is severed, the molecule breaks yield-
ing two fragments with molecular masses Mmn

� and Mmn
þ . Invok-

ing the Gaussian chain model, the average overall
conformations (denoted by the angle brackets) of the squared
radius of gyration hRg

2im would be:

M2
m

D
R2

g

E
m
¼ b2

XNmZ

n¼1

M�mnMþmn (14)

The MSD of the fragments obtained by cutting links will
yield the average molecular radius of gyration but appropriate
mathematical techniques are still needed in order to compute
its averages for suitable molecular populations. Soon after
Stockmayer’s calculation of the equilibrium MSD for simple
step-growth polymerizations, analytical expressions for the
related molecular average radius of gyration of ideal chains
could be found [31] by exploiting the above relation (Eq.
(14)). A much more convenient method uses TBP [32,33]
for computing the expected value of the product of the two
molecular masses at either side of each arbitrary link. This
leads to Eq. (15) yielding the z-average radius of gyration of
the whole population and all conformations (denoted by an
overline symbol), where the RUs have been supposed to have
an equal molecular mass:

R
2

g ¼
XN
m¼1

wmMm

D
R2

g

E
m
=
XN
m¼1

wmMm ¼
xn� 1

xnxw

b2

 
du

d log sjs¼1

!2

(15)

where wm is the mass fraction of species Pm. The function u(s)
satisfies Eq. (6) and the number- and weight-average degrees
of polymerization xn, xw can be easily found by calculating
the required derivatives starting from Eqs. (6) and (7):

xn ¼
dĜn

d log sjs¼1

Ĝnð1Þ

xw ¼
dĜw

d log sjs¼1

Ĝwð1Þ

(16)

A few other conformation dependent physical properties,
denoted asQ in Eq. (17) below, can also be obtained as double
sums over all pairs of connected RU of some function F of the
distance separating them, under the same simplified descrip-
tion of a polymer molecule as a set of x connected point-
like beads:

x2hQim¼
Xx

k¼1

Xx

l¼kþ1

Fðjrk� rljÞ (17)

An example is the inverse of the hydrodynamic radius 1/Rh,
which may be found through Eq. (17) with F¼ 1/jrk� rlj.

The key for a convenient evaluation of those double sums
was the introduction of trail generating functions [34,35],
and detailed reviews of these methods have been published
by Burchard [36,37]. A trail is defined as a linear sequence
of links. If the length of the links is constant, the double
sum in Eq. (17) can be evaluated knowing the numbers of
distinct trails NT

mn containing n links for that molecule:
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x2hQim¼ 2
Xx�1

n¼1

NT
mnfn (18)

where, assuming the Gaussian chain model:

fn ¼ F
�
nb2
�

(19)

The recurrence below generalizing Eqs. (6) and (7) can be
used for computing a trail (or path) generating function
[34,36]:

U0

�
s
�
¼ sf

0 F0ðU1Þ
Un

�
s
�
¼ sf

n F1ðUnþ1Þ n> 0
(20)

yielding the desired property as a z-average over the popula-
tion of polymer molecules:

xwQz ¼
XN
m¼1

xmwmQm ¼
dU0

ds js¼1
(21)

More recently, a generalization of Kajiwara’s approach [38]
has allowed the prediction of distributions of the radius of gy-
ration for the classes of polymer molecules with same counts
of groups and not only of its z-average for the whole
population.

A different and more general approach based upon graph
theory [39e41] takes into account the space coordinates of
the chemical groups in polymer. Physical properties are ob-
tained through averaging among the set of those spacial posi-
tions, so that it is convenient to describe the populations of
polymer molecules with generating functionals of the space
coordinates of the chemical groups they contain. An important
goal is now the prediction of the two-point correlators of group
densities, which describe the probability densities of the dis-
tances between pairs of chemical groups. They will lead to
the prediction of conformation dependent physical properties
in a more elegant way than the evaluation of the aforemen-
tioned double sums.

Still more interesting is the description of space dependent
group interactions such as cyclizations and excluded volume
effects, which can be carried out in a rigorous way in contrast
with simpler theories which assume that polymer molecules
are embedded in a fixed lattice.

However, this approach has mainly yielded complete re-
sults for chemical equilibrium, or without coupling of rates
of chemical reactions with spacial position.

1.3. Experimental measurement of the mean square
radius of gyration and its prediction in kinetic controlled
polymerization systems

In recent years, significant research efforts have been de-
voted to the synthesis and characterization of branched poly-
mers. The modification of the molecular architecture can be
used as a tool to obtain tailored polymers due to its strong in-
fluence on their macroscopic properties. An important exam-
ple is the introduction of controlled amounts of branching
units on the polymer structure giving rise to a dramatical
change in physical properties such as viscosity and solubility.
Hyperbranched polymers are known to have a much lower vis-
cosity in solution and in the molten state than their linear
counterparts. The thermal properties of this kind of materials
are also significantly affected by the degree of branching [42].

It has also been recently acknowledged that long-chain
branching can improve the processability of polyolefins with-
out negatively impairing their physical properties in a serious
way [43e45]. Experimental studies on the branched structure
of materials produced by radical polymerization, such as
poly(vinyl acetate) [46] and the copolymer obtained from
methyl methacrylate and ethylene glycol dimethacrylate
[47], also witness the interest on the use of branched polymers
in the design of new products.

A quantitative characterization of the architecture of
branched polymers can be obtained from the ZimmeStock-
mayer branching factor [31], which is defined as the ratio of
the mean square radius of gyration of the branched polymer
to that of the linear one with same molecular weight:

g¼
�

Rgbra

Rglin

�
M

(22)

As the intrinsic viscosity [h] of macromolecules in solution
can also be experimentally measured and the hydrodynamic
volume is a major factor controlling it, the branching index
defined by Eq. (23) is also widely used:

g0 ¼
�
½h�bra

½h�lin

�
M

(23)

The possibility to measure g0 without application of a viscom-
eter, by using size exclusion chromatography and a multi-
angle laser light scattering (SECeMALLS) is also reported
in the literature [43]. It is usually accepted that g and g0 are
related through some power law:

g0 ¼ gb (24)

However, b is not a true constant and its value depends on the
type of branching (regular star, regular comb, randomly
branched.). Experimental measurements indicate that the pa-
rameter b can take values in the range 0.5e1. Therefore, it
would be desirable to achieve some reliable predictive method
of this latter branching factor, but this is not an easy task, as
will be discussed below.

Model homopolymers with a narrow molecular weight dis-
tribution and a well-defined architecture are ideal for the ex-
perimental quantification of branching. Some recent works
using size exclusion chromatography and two-angle laser light
scattering measurements (SECeTALLS) for polystyrene
combs and centipedes [48,49] have confirmed the good agree-
ment between theory and experiments for these systems. In
a related work [50], computer simulations were shown to pre-
dict the SEC calibration curves for comb-branched polymers
within the same accuracy (10e15% of error) of the absolute
determination of molecular weights.
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Randomly branched polymer mixtures are much more dif-
ficult to analyze. In SEC, polymer molecules are supposed to
be fractionated by the hydrodynamic volume. It is well known
that the size of branched molecules is smaller than that of lin-
ear molecules with the same molecular weight. This means
that the true molecular weight distribution (MWD) cannot
be measured using linear polymer standards to establish the
relationship molecular weight versus elution volume. If LS in-
tensity and concentration detectors (such as a differential re-
fractometer) are simultaneously used, the weight-average
molecular weight for each elution volume can be directly
measured. Nevertheless, with branched polymer mixtures
there are polymer molecules with the same hydrodynamic vol-
ume but different molar masses due to their different branched
structures. This means that within the same elution volume
slice there are molecules with different molecular masses
and by consequence, the true MWD cannot be obtained
even by using LS. This fact increases the interest of develop-
ing simulation methods allowing the prediction of the
elution curve of a non-linear polymer from its formation
mechanism [51].

The simulation of size exclusion chromatography of
branched polymers was carried out for some polymerization
systems by Tobita and coworkers using a Monte Carlo random
sampling technique [16,51e54]. For the radical polymeriza-
tion of vinyl acetate [16] a satisfactory agreement with the
radii of gyration at a Q state with the ZimmeStockmayer
equation for randomly branched polymers was found. This
was explained through the large number of relatively small
branches formed by chain transfer to polymer and terminal
double bond polymerization, both contributing to the forma-
tion of a structure close to the ideal randomly branched one.
But in a later work where a radical polymerization with chain
transfer to polymer was investigated [52], it was shown that
since the branching is less random, and the primary polymer
chains do not follow the most probable distribution, the
ZimmeStockmayer equation could not be used to estimate
the radii of gyration. In a related work [53] it was reported
that the ZimmeStockmayer equation clearly underestimates
the radii of gyration for crosslinked polymers.

Iedema and Hoefsloot [55,56] have computed radius of gy-
ration distributions of branched polymers in a CSTR starting
with predictions of joint distributions of degree of polymeriza-
tion and number of branches offered by the aforementioned
kinetic method. Instead of using Monte Carlo method for the
random generation of possible radii of gyration for a large
sample of polymer species, they have used an approximated
Kirchhoff matrix of polymer molecules (see Ref. [30]) to com-
pute that distribution. The desired overall distribution of radii
of gyration was computed by superposing the aforementioned
distributions for the various molecules with different numbers
of branches and degrees of polymerization. A key aspect is the
found insensitivity of the distributions of the radius of gyration
with respect to the detailed molecular architecture: only de-
gree of polymerization and number of branches seem to be
important. Thus, successful predictions of distributions of
hydrodynamic volume using Eqs. (23) and (24), as would be
measurable by SEC according to the above discussion, could
be carried out.

One of the main goals of the aforementioned work on the
extension of TBP of branched polymers [38] was to provide
an improved prediction of polymer chromatograms through
SEC. Those calculations have been carried out with rather
simple chemical systems (equilibrium self-polycondensations
of one monomer, but with possible substitution effects), but
they are much more reliable than previous studies. Still, con-
sideration of complex polymerization schemes for which there
is no such a simple branching process puts a difficult challenge
to reach similar results.

The work on the prediction of Rg for Gaussian chains by the
present authors was started some years ago [57] and in the pres-
ent paper a revised modeling is put forward, allowing its predic-
tion for tree-like polymers formed by irreversible reactions in
batch, semi-batch or continuous stirred tank reactors (CSTRs).
This measure of molecular size can be useful as a means of im-
proving the knowledge about the architecture of the polymer
structure and possibly correlate physical properties of the poly-
mer. The interest of this kind of simulations increases if the
evolution of parameters such as molar mass and degree of
branching along the polymerization is desired [47]. Experimen-
tal determination of Rg yields an important consistency check
between theory and experiment (of course, the effect of chain
expansion in good solvents needs to be properly accounted
for). With the general method here presented there is no need
to face a completely new problem when a different chemical
system is analyzed. Indeed, several works dealing with the pre-
diction of the z-average radius of gyration of different chemical
systems, such as the numerous recent investigations on hyper-
branched polymers [58e61,64], could have been carried out in
an automated way using this approach.

The main goal of the present work is therefore to show that
with similar concepts already used in the prediction of the
MSD it is also possible to calculate the mean square radius
of gyration of tree-like polymers. The general equations
needed for the development of a kind of interpreter of irrevers-
ible polymerizations are presented and three different case
studies are discussed. Step-growth polymerizations leading
to hyperbranched polymers, the anionic copolymerization of
mono- and divinyl monomers and a radical polymerization
with terminal branching and transfer to polymer are chosen
as case studies. The reliability of the predictions is confirmed
throughout the comparison with analytical solutions for simple
systems or with alternative methods. The usefulness of the
present approach is further shown when a complex scheme
for radical polymerization with terminal branching and trans-
fer to polymer is considered. In all situations, it is shown that
the calculations can be extended beyond the gel point.

2. Description of polymer structure related to the
average molecular radius of gyration

For each of the NX monomers, Y1;.; YNX
, a root group

(RG) of the repeating unit (RU) is identified and their set
is supposed to be X1;.;XNX

. The RUs are assumed to be
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star-like, with all other groups being directly attached to it.
Chemical reactions do not change root groups after their cre-
ation through incorporation of a monomer into a polymer
chain. From the total number NA of kinds of chemical moieties
Aj, the number of those belonging to polymer molecules will
be defined as NP. Polymer groups with indices above NAP

are not consumed by chemical reaction.
Since only tree-like molecules are considered, there is only

one link connecting every pair of RG. A set of NZ links
Z1;.; ZNZ

is defined, according to the nature of the two
groups which have reacted and produced them by chemical re-
action. To each link corresponds a pair of reacted chemical
groups, attached to each of the respective RU. The link Zn is
formed by the reaction of groups Ag�n and Agþn , and it will be
assumed that gn

�� gn
þ. A positive sense and a negative sense

are associated with each link. By convention, the group with
lower index was attached to the RU originally at the negative
side of the link. In order to avoid multiple levels of indexing,
a notation inspired in the way computer assembly languages
describe indirect addressing will be used, as vectors gþ and
g� are just collections of indices. Thus, the two groups directly
involved in the n-th reaction sticking together two polymer
molecules will rather be designated as A[n�] and A[nþ].

A limited number of intramolecular reactions forming
loops might be considered, but the details are not straightfor-
ward and we will rather not discuss the matter for brevity.

As we are interested in predicting molecular dimensions us-
ing the Gaussian chain model, a length bn will be defined as the
mean-squared distance between the centers of mass of the root
groups connected by that link. So, bn does not change when
other groups attached to the root groups react. However, the cen-
ter of mass of the RU does not always lie at the position of the
root group, and so for a more exact modeling the variable con-
tributions of all groups in the RU have to be taken into account.

These concepts will be illustrated using the hypothetical
polymerization of benzene to poly(1,4-phenylene); in more
usual chemical systems, the effective bond lengths to be
used in the Gaussian chain model would have to be increased
with respect to the true ones in order to take into account the
effect of atomic repulsions in real molecular conformations.
The root groups will be conveniently placed at the geometrical
centers of the aromatic rings, since this is also their center of
mass (see Fig. 1). Therefore, the length of the link connecting
two consecutive RUs is b¼ 3bCeC where bCeC is the length of
a carbonecarbon aromatic chemical bond.

Fig. 1. The concept of link between root groups in repeating units and its

average length b illustrated by the hypothetical polymerization of benzene to

poly(1,4-phenylene). bCeC is the length of an aromatic carbonecarbon bond.
It is also necessary to know the molecular mass MA
j and

the contribution of each group to the radius of gyration of
the RU where it is inserted, such that the average squared
radius of gyration hR2

gi
X of an RU carrying aX

1 ;.; aX
NA

groups
A1;.;ANA

would be computed through Eq. (25):

D
R2

g

EXXNA

j¼1

aX
j MA

j ¼
XNA

j¼1

aX
j MA

j R2
j (25)

In the above example, the average gyration radius of the RU
may be found using

ð6MC þ 4MHÞ
D

R2
g

EX

¼ 6MCb2
CeCþ 4MHðbCeC þ bCeHÞ2

(26)

In general, the group contributions to the radius of gyration
Rj

2 will take into account the distribution of their masses and
distances to the center of mass of the RU.

The molar mass Mm of a generic molecule Pm is the sum of
the molar masses of the groups it contains:

Mm ¼
XNA

j¼1

amj
MA

j ¼ amMA (27)

Moments with respect to molecular mass, needed for com-
puting average molecular masses, can be obtained by repeated
application of the operator DM as shown below:

lM ¼
PN
m¼1

Mm½Pm� ¼ DMGjs¼1 ¼
PNA

j¼1

MA
j

vG

v log sj js¼1

lMM ¼
PN
m¼1

M2
m½Pm� ¼ D2

MGjs¼1

(28)

Since a generic polymer molecule Pm is a tree, breaking its
j-th link of kind Zn, Zmnj (where the index j is some number not
greater than the count of links in the parent molecule amn

Z )
yields two separate fragments, which will be called pendant
chains. The group counts of the two fragments pendant chains
will be named amnj

� and amnj
þ . Their sum is the vector of group

counts of the parent molecule, am¼ amnj
� þ amnj

þ .
Regrouping the contributions of all polymer molecules for

the same kind of links Zn, their overall molar concentrations
½Hnða�1 ;.; a�NA

; aþ1 ;.; aþNA
Þ� will be used for describing the

size distribution of double-sided pendant chains (abbreviated
as PCSDs) with GF GH

n (s�, sþ) as below defined:

GH
n

�
s�; sþ

�
¼
XN
a�

1
¼0

.
XN

a�
NA
¼0

XN
aþ

1
¼0

.
XN

aþ
NA
¼0

�
s�1
�a�

1 .
	

s�NA


a�
NA

�
�
sþ1
�aþ

1 .
	

sþNA


aþ
NA

h
Hn

	
a�1 ;.;a�NA

;aþ1 ;.;aþNA


i
ð29Þ

The expected value of the product of pendant molecular
masses at the two sides of the severed links may be obtained
through:
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lM�Mþn ¼
XNA

l¼1

XNA

m¼1

MA
l MA

m

v2GH
n

v log s�l log sþm
ð1;1Þ

¼
XNA

l¼1

XNA

m¼1

MA
l MA

mln
l�mþ (30)

The symbol 1 has been used above to denote a vector of NA

ones.
Only finite molecules have been included in the above

sums. So, if there is an infinite network, Gn
H(1, 1)< [Zn].

A generalization of Eq. (14) taking into account the contri-
bution of all repeating groups to the radius of gyration is:

M2
m

D
R2

g

E
m
¼
XNmZ

n¼1

b2
mnM�mnMþmnþMm

XNmA

i¼1

amiM
A
i R2

i

¼
XNZ

n¼1

b2
n

XaZ
mnj

j¼1

XNA

k¼1

XNA

l¼1

MA
k MA

l a�mnjka
þ
mnjl

þ
XNA

k¼1

XNA

l¼1

MA
k MA

l R2
l amkaml ð31Þ

where, for that polymer molecule with counts of links
aZ

m1.aZ
mNZ

, amnj
� and amnj

þ are the vector counts of the chemical
groups in the two fragments resulting from severing the j-th
link of kind Zn. Summing the contributions for all polymer
species Pm as provided by the above relation, multiplied by
their molar concentrations and the dummy Laplace variables
raised to their counts of groups, it results:

XN
m¼1

s
am1

1 .s
amNA
NA

M2
m

D
R2

g

E
m
½Pm� ¼

XNZ

n¼1

b2
n

XNA

k¼1

XNA

l¼1

MA
k MA

l

XN
m¼1

XaZ
mnj

j¼1

s
a�

mnj1
þaþ

mnj1

1 .s
a�

mnjNA
þaþ

mnjNA
NA

a�mnjka
þ
mnjl½Pm�

þ
XNA

k¼1

XNA

l¼1

MA
k MA

l R2
l

XN
m¼1

ammamks
am1

1 .s
amNA
NA
½Pm� ð32Þ

The left hand side of Eq. (32) will be used for defining a GF of
the z-distribution of the radius of gyration with respect to
group counts of the molecule GRg(s) as

GRgðsÞ
XN
m¼1

M2
m½Pm� ¼

XN
m¼1

s
am1

1 .s
amNA
NA

M2
m½Pm�

D
R2

g

E
m

(33)

We will now rewrite the first sum in the right hand side of
Eq. (32) in terms of the PCSD, since the molar concentration
of the double-sided pendant chain of kind n in molecule Pm is
simply the number of links of that kind times the molar con-
centration of the molecule, ½Hmn� ¼ aZ

mn½Pm�, yielding thus:
GRgðsÞ
XN
m¼1

M2
m½Pm�

¼
XNZ

n¼1

b2
n

XNA

k¼1

XNA

l¼1

MA
k MA

l

v2GH
n

v log s�k v log sþl js�¼s;sþ¼s

þ
XNA

k¼1

XNA

l¼1

MA
k MA

l R2
l

v2G

v log skv log sl

ð34Þ

The distribution of the number average mean-squared gyration
radius of the isomers with the same counts of groups (lumped
distribution) can be obtained from Eq. (34) as discussed in Ap-
pendix A for a simple chemical system.

In most situations only the averages of this distribution are
desired. These averages can also be calculated from Eq. (34)
by differentiation or integration with respect to the parameters
sj and evaluated at s¼ 1. The example with more practical im-
portance is the z-average obtained simply by setting s¼ 1 in
Eq. (34):

lMMR
2

g ¼ lMMGRg

�
1
�
¼
XNZ

n¼1

b2
nlM�Mþnþ

XNA

k¼1

XNA

l¼1

MA
k MA

l R2
l lkl

(35)

Expressions previously found by Gordon and collaborators
[32,33] such as Eq. (14) (leading to Eq. (15)) are particular
cases of Eq. (35), with constant molecular masses of the RU
and lengths of the links (bn¼ b), and also negligible contribu-
tions from the radii of gyration of the groups (R2

j ¼ 0). Now,
instead of using TBP, an alternative kinetic approach can be
developed starting from this formulation, with some advan-
tages (such as the easiness to take into account substitution ef-
fects) which will become apparent in the remaining of this
paper.

3. Population balance equations for polymer molecules
and pendant chains

A convenient general classification of the chemical reac-
tions intervening on a generic polymerization system was pre-
viously presented [22]. Here, the same notation is used and
only the effects of chemical reactions on the pendant chains
need still to be discussed.

In Table 1 are some examples of the effects of the polymer-
ization reactions on the pendant chains. Note that the polymer
species with a single RU resulting from the NM reactions of
transfer to monomer or from one of the NI reactions of a mono-
mer with an initiating species (radical, ion or catalyst site),
eventually coming from transfer to solvent, are devoided of
pendant chains, which are assumed to exist only when the
polymer molecule contains at least two RUs.

The NR chemical reactions creating connections between
RU will create new links Zn labelled with the same index as
the reaction, either when two polymer molecules are fused
(the NRP

reactions with lower indices, e.g. termination by com-
bination) or when a non-polymeric molecule adds to the poly-
mer (the remaining NR � NRP

reactions, e.g. propagation with
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monomers). Pendant chains will also modify their group
counts owing to these reactions on either side.

There is no creation of new links for the NR
* unimolecular

reactions, the NR
** bimolecular reactions, the NI bimolecular

initiations reactions and the NM reactions of transfer to mono-
mer, although they modify the group counts in the pendant
chains. Other reactions, either unimolecular or bimolecular,
do not involve groups in polymers and they are not involved
in the PBE of polymers or pendant chains.

In the case of irreversible polymerizations, a general master
equation describing the time change of the generating func-
tions of polymer MSD for a non-steady state perfectly mixed
CSTR (other ideal reactors being particular cases) can be
established [22,19]:
with initial condition:

GH
njt¼0 ¼ GH

n0

�
s�0
�
t; s�

�
; sþ0
�
t; sþ

��
(39)

In Eq. (38), RBZn
represents the generating function of the

birth rate of new pendant chains due to the set of reactions
creating new connections between repeating units. This latter
process can occur due to propagations or termination by
combination:

RBZn ¼
knJ�n ðs�ÞJþn ðsþÞ

vG

v log s�½n��

vG

v log sþ½nþ�
1� n� NRP

knJ�n ðs�ÞJþn ðsþÞ
vG

v log s�½n��
A½nþ� NRP

þ 1� n� NR

8>><
>>:

(40)
Gjt¼0 ¼ G0½s0ðt; sÞ� (37)

An analogous PBE for the pendant chains (in Laplace do-
main) can also be written:

The population balance (Eq. (38)) of the PCSD in Laplace
domain is a semi-linear first-order partial differential equation
which must be solved together with the PBE determining
MSD. The generating function of the MSD, G(s), is obtained
by solving Eq. (36) with the initial condition (Eq. (37)).
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Table 1

Polymerization reactions and some examples of their direct effect on pendant chains

Reaction description Number Direct effect on pendant chains (examples)

Bimolecular/new links NR

Polymer/polymer NRP a�X� þ Xþaþ!kn ða� þ n�n ÞX�ZnXþðaþ þ nþn Þ
Polymer/monomer NR � NRP a�X� þM!kn ða� þ n�n ÞX�ZnXþðaþ þ nþn Þ

Unimolecular NR
*

Involving polymer N�RP
a�Znaþ !

k�m ða� þ n�mÞZnaþ

Not involving polymer N�R � N�RP
None

Bimolecular/not connecting RU NR
**

Polymer/polymer N��RP
a�Znaþ þ A½m��þ� !

k��m
a�Znðaþ þ n��þm Þ þ/

Polymer/non-polymer N��RS
a�Znaþ þ S!

k��m
a�Znðaþ þ n��þm Þ þ/

Only small molecules NS None

Initiations NI

Transfers to monomers NM a�Znaþ þM!
kMm

a�Znðaþ þ n�Mm
Þ þ/
Note that Eq. (36) is a first-order non-linear partial differential
equation, with an independent solution yielding G(s�), G(sþ)
and the derivatives of G(s) evaluated at s� or sþ. These quan-
tities must be inserted in Eq. (38), which becomes thence
a semi-linear partial differential equation. This means that, fol-
lowing similar principles as in previous works [19,22], the so-
lution of Eq. (38)þ Eq. (36) can also be obtained by the
method of characteristics [66]. The characteristics of this prob-
lem are obtained by solving the system of ordinary differential
equations presented in the Supporting information of this
paper.

Finally, the formulation of the problem becomes complete
with the consideration of the PBE of the chemical groups
(A) and (if needed) of the rate of change of reaction volume.
These equations have been previously presented [22] and so
are not here reproduced by conciseness.

Owing to the symmetry of the equations for the variables
corresponding to the two senses of the links, there is no
need to recompute the characteristics if the final vectors verify
s�¼ sþ¼ s. In this case the characteristics are the same which
are needed for the evaluation of G(s).

The equations of change along the characteristics for the
derivatives of GH

n needed for computing the z-average radius
of gyration are to be evaluated at s�¼ sþ ¼ 1, as follows
from Eq. (35). This means that the aforementioned simpler
situation for the computation of the characteristics holds for
the prediction of the z-average radius of gyration. From
Eq. (35) it is clear that the computation of Rg is possible if
the second order moments (lij) can be obtained and if the sec-
ond order moments of PCSD ðln

i�jþÞ can also be calculated.
The equations for lij have already been presented [22] and
also are not here reproduced by conciseness. The general
equation needed for the computation of the third order
moments (lijk) of the MSD is available in the Supporting
information of this work.

Population balance equations for ln
i�jþ are obtained by dif-

ferentiation of Eq. (38), yielding a system of first-order partial
differential equations. Its solution can be found in a similar
way as for Gn

H. Indeed, that system of PDE becomes also
semi-linear and its characteristics are also shared by the mo-
ments of the PCSD.
With the application of these principles, the moments of the
PCSD needed for the calculation of Rg are obtained from the
solution along the characteristics of the set of ordinary differ-
ential equations shown in the Supporting information.

4. Case studies

4.1. Case study I: hyperbranched polymers formed by
step-growth polymerization

The simplest polymerization system is the ideal irreversible
step-growth polymerization of a single monomer with struc-
ture AB. The two end groups A and B react irreversibly creat-
ing a link Z. It is well known that the MSD of the resulting
polymer is the SchulzeFlory distribution and the z-average ra-
dius of gyration for Gaussian chains is given by R

2
g ¼

b2p=ð1� p2Þ, where p represents the conversion of end
groups.

This simple system was used as a first test of the reliability
of the general method here presented and of its computational
implementation. Three different chemical species are present:
the end group A (A1), the end group B (A2) and the link Z (A3).
The single chemical reaction is the reaction between A and B
with the following associated vectors of stoichiometric coeffi-
cients: n1

� ¼ [�1, 0, 1] and n1
þ¼ [0, �1, 0]. The expected re-

sults were reproduced by simulating this system with the
present approach, as can be observed in Figs. 2 and 3. The
slope of the linear relation represented in Fig. 3 is 1/6, as ex-
pected for z-average characteristic ratio R

2
g=ðb2xzÞ of linear

polymers.
In the last two decades, a lot of research activity in polymer

science has been focused on the synthesis and modeling of the
formation of highly branched macromolecules such as den-
drimers and hyperbranched polymers [62]. Dendrimers are as-
sociated with the birth of a new macromolecular architecture
with several applications in the emerging field of synthetic
nanochemistry [63]. These polymers have unique physical
and chemical properties: relatively low viscosity, high solubil-
ity, non-entanglement and numerous terminal groups. Ran-
domly branched hyperbranched polymers are easily obtained
by one-step step-growth polymerization of several kinds of
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monomers [64]. On the contrary, the synthesis of dendrimers
usually involves several iterative stages. For this reason, hy-
perbranched polymers are more convenient for commercial
applications. Molecular weight, degree of branching and
mean square radius of gyration are key parameters used in
the description of hyperbranched polymers.

The general kinetic approach presented here will now be
used to predict the mean square radius of gyration of this class
of hyperbranched polymers. One of the advantages of this
method is the possibility to analyze different chemical systems
by changing only the input to the developed computer pro-
gram. Indeed, several highly branched polymers resulting
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the ideal linear AB step-growth polymerization and for the hyperbranched sys-

tems AB2þ AB and A2þ B3.
from the step-growth polymerization of monomers like
AB2þ AB, A3þ B2, AB3, AB4 can be easily simulated simply
by changing the initial conditions of the polymerization if
the same kinetics of the reaction between A and B is consid-
ered. Another advantage of the present method is the possibil-
ity of describing the reaction beyond gel point if needed. A
comparison with previous results [64] obtained with alterna-
tive approaches in the AB2þ AB polymerization will be used
as another reliability test of the present method.

For a simple analysis of the AB2þ AB polymerization sys-
tem, the same stoichiometric coefficients written above for the
AB system can be used. One needs only to change the initial
condition of the population balance of polymer in terms of
generating functions, which becomes now:

Gjt¼0 ¼ G0½s0ðt; sÞ� ¼
�
X1

�
s10s2

20þ
�
X2

�
s10s20 (41)

In this equation, [X1] represents the initial mole concentration
of the monomer AB2, [X2] is the initial mole concentration of
the monomer AB, s10 and s20 are the initial values of the
dummy Laplace variables associated with groups A and B,
respectively.

In Figs. 2 and 3 are also presented the computed Rg for this
kind of hyperbranched polymers. The initial composition of
the system is represented by the mole fraction of the AB2

monomer, which is y2 ¼ ½X1�=ð½X1� þ ½X2�Þ. As expected, for
the same xz, the z-average radius of gyration of the hyper-
branched AB2þ AB polymer is smaller than with the AB linear
system. It is also important to note that the results here ob-
tained for the AB2þ AB step-growth polymerization fully
agree with the simulations of the same system by alternative
methods [64]. This constitutes a supplementary test of the re-
liability of the present approach.

Another randomly branched hyperbranched system with
growing industrial interest [67] is obtained through the step-
growth polymerization A2þ B3. This polymerization can also
be simulated with the same principles used for the other two
step-growth polymerization systems. Again, only the initial
condition below needs to be changed:

Gjt¼0 ¼ G0½s0ðt; sÞ� ¼
�
X1

�
s2

10 þ
�
X2

�
s3

20 (42)

The behavior of this system is also presented in Figs. 2 and
3. An important feature is its possibility of gelation. The initial
composition ( y2¼ 0.5) was chosen in order to observe the
same concentration of both end groups considered in the
AB2þ AB step-growth polymerization. With this initial com-
position, gelation occurs when the conversion of end groups
A is 0.866 (and 0.577 for B) but the present method can be
used to calculate the z-average radius of gyration of the solu-
ble fraction of the polymer after gelation, as can be observed
in Fig. 2. For the same xz, Rg for the A2þ B3 polymer is larger
than with the AB2þ AB system (see Fig. 3). Note also that for
the A2þ B3 system, the relation between xz and Rg is the same
before and after gelation, which is a consequence of the ran-
domness of this polymerization system. This situation does
not hold for non-random branching systems, as will be shown
in the next case study.
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4.2. Case study II: anionic polymerization of mono- and
divinyl monomers

In order to verify the ability of the general method proposed
to predict Rg and to test its computational implementation, yet
another simple case study, the linear anionic polymerization of
a monovinyl monomer will be discussed. At least four differ-
ent chemical species need to be considered: the carbanion in
the polymer chain end (A1), the monovinyl monomer (A2),
the initiator (A3) and the polymerized monomer unit (A4). If
an ideal polymerization is assumed, only the elementary reac-
tions monomer initiation (rate coefficient ki) and monomer
propagation (rate coefficient kp) are present. The vectors of
stoichiometric coefficients associated with these reactions
are: initiation, nI¼ [1, �1, �1, 1]; propagation, n�1 ¼ [�1, 0,
0, 0] and nþ1 ¼ [1, �1, 0, 1].

If the initiation is much faster than propagation (e.g. Ci ¼
ðki=kpÞ > 10), it is well known that the CLD of the polymer is
a Poisson distribution. In these circumstances, the evolution of
z-average radius of gyration can be analytically obtained: R

2
g ¼

b2fðf2 þ 6fþ 6Þ=½6ðf2 þ 3fþ 1Þ�, where f¼ rp� 1, r¼
[M0]/[I0] and p represents the monomer conversion. A single
kind of links connecting RU in the polymer (with length b)
is considered. These known results were fully reproduced us-
ing the computational implementation of the general method
presented here as can be observed in Figs. 4 and 5.

When the relative rate of initiation is very slow (e.g.
Ci¼ 10�4), the MSD of the polymer becomes the Gold [69]
distribution. In this case, it is not possible to obtain a simple
analytical solution for R

2
g but a numerical solution can be read-

ily calculated using the present method. These results are also
shown in Fig. 4. As expected, with a slow initiation, for the
same monomer conversion a higher value of Rg is predicted
relatively to the instantaneous initiation system. Nevertheless,
either for slow or for instantaneous initiation, the same linear
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Fig. 4. Evolution of the z-average mean square radius of gyration ðR2
g=b2Þ in

different anionic polymerization systems.
relation between z-average radius of gyration and z-average
degree of polymerization is predicted (see Fig. 5). Since the
polymer chains are linear, the z-average characteristic ratio
for these systems is also 1/6.

A more complex system results from the consideration of
the anionic polymerization of vinyl monomers in the presence
of divinyl monomers. An important feature of this kind of sys-
tems is their possible gelation. A discussion about the kinetics
and its influence on the evolution of the average molecular
weights (before and after gelation) for this kind of polymeriza-
tions was already published by the present authors [22]. For
conciseness, only essential details needed for the calculation
of Rg for this system will be presented here.

The kinetic scheme comprises the following kinds of
reactions:

� Initiations (6),
� Propagations (6),
� Hydride eliminations (2),
� Transfers to solvent (2),
� Terminations (4).

So, a total number of 20 chemical reactions are considered.
The simplest set of chemical groups contains 12 different spe-
cies: initiator, monovinyl monomer (MVM), divinyl monomer
(DVM), solvent (S), MVM anion, DVM anion, S anion, pen-
dant vinyl group in the polymer, terminal vinylene from
MVM, terminal vinylene from DVM, polymerized MVM
unit and polymerized DVM unit.

The initial composition of the system considered in the sim-
ulations was: MVM0¼ 3.996, DVM0¼ 0.004, I0¼ 0.004 and
S0¼ 4 mol dm�3. The kinetic parameters here considered
were the same as used in Ref. [22]. For these conditions, ge-
lation is predicted when the global monomer conversion is
around 0.48, as can be observed in Fig. 4. In the same figure,
it is shown that the prediction of the evolution of R

2
g can be
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carried out before and after gelation also for this more com-
plex polymerization system. From Fig. 5 it is clear that the di-
mension of the non-linear polymer chains is much smaller
than their linear counterparts with same degree of
polymerization.

For this non-linear system, the relations between xz and Rg

before and after gelation do not collapse to a single curve. This
is a consequence of the non-random character of this polymer-
ization system, in contrast with the polycondensation systems
analyzed in the previous section.

4.3. Case study III: radical polymerization with terminal
branching and transfer to polymer

In several radical polymerization systems, long-chain
branching can occur due to propagation into terminal double
bonds and transfer to polymer. As a result of these mecha-
nisms of branching, trifunctional units are present in the struc-
ture of the polymer [68,70,71]. Polymerizations of vinyl
acetate, ethylene, methyl acrylate, vinylidene fluoride and vi-
nylidene chloride are examples of chemical systems involving
long-chain branching.

The analysis of this kind of systems has already been car-
ried out by using the present approach for the calculation of
average degree of polymerization or the MSD itself, before
and after gelation, in batch and CSTR reactors [21,23]. The
main objective of the present section is to show that the
method here presented for the prediction of z-average radius
of gyration can also be used with those complex chemical sys-
tems. Calculations before and after gelation are possible and as
previously discussed [21,23] significant gains in accuracy in
comparison to alternative simplified methods can be achieved.
Another advantage of the present approach is the possibility of
analyzing polymerization systems in an automated way, keep-
ing error-prone human intervention to a minimum.

Twelve different chemical species (NA¼ 12) will be consid-
ered in this analysis as shown in Table 2. Five different kinds
of polymer radicals are distinguished because the structures
resulting from transfer to monomer, polymer or terminal dou-
ble bonds polymerization are different from a normal propa-
gating chain radical and therefore very different reactivities
are expected. Two kinds of terminal double bonds are also dis-
tinguished due to the possible difference in their reactivities:
terminal double bonds originated from transfer to monomer
(TDBM) and terminal double bonds originated from termina-
tion by disproportionation (TDBD). A site of transfer to poly-
mer (STP) is often a tertiary hydrogen in the polymer chain.
These chemical groups (polymer radicals, terminal double
bonds and STP) are present in polymer molecules and are ac-
tive species, and so NAP¼ 8. Monomer, initiator and primary
radicals are active species ðdAj

¼ 1Þ but they do not belong
to the polymer ðdPj

¼ 0Þ. Polymerized monomer units (dAj

¼ 0 and dPj
¼ 1) are considered in order to have information

about the degree of polymerization. If a more detailed infor-
mation is desired (number of branching points or initiator frag-
ments in the polymer chains, for instance) new groups can be
added to this last set of chemical species. In the present case
study NP¼ 9 groups are considered in order to adequately de-
scribe the polymer molecules.

The kinetic scheme considered comprises a total of 59 chem-
ical reactions. For conciseness, the detailed kinetic scheme is
available as Supporting information to this work. These reac-
tions are grouped into five different classes. There is only one
(NR

* ¼ 1) unimolecular reaction, the initiator decomposition
and similarly only one (NI¼ 1) bimolecular reaction involving
small molecules with polymer formation (the monomer initia-
tion by a primary free-radical). NR¼ 30 reactions create con-
nections between repeating units: NRP

¼ 25 of these involve
only polymer molecules (terminal double bond propagations
and terminations by combination) and five involving polymer
molecules and a small molecule (monomer propagations).
There are NR

**¼ 22 bimolecular reactions which do not create
connections between repeating units: N��RP

¼ 20 of these involve
only polymer molecules (transfers to polymer and terminations
by disproportionation) and N��RS

¼ 2 involve polymer molecules
and a small molecule (terminal double bond initiations). At last,
there are NM¼ 5 reactions of transfer to monomer creating new
polymer species. The above remark concerning the number of
chemical groups to be considered also applies to the number
of chemical reactions. This means that if other reactions be-
come significant in the kinetic scheme (e.g. transfer to solvent),
they can be added in an automated way.
Table 2

Description of groups in a radical polymerization with terminal double bonds branching and transfer to polymer

Group description j dPj
dAj

Chemical formula (example)

Radical from monomer (FR1) 1 1 1 eCH2eHYC
�

Radical from MS (FR2) 2 1 1 CH2]CHY
�

Radical from TDBM (FR3) 3 1 1 eCH2eC
�
HYe

Radical from TDBD (FR4) 4 1 1 eCHYeC
�
He

Radical from STP (FR5) 5 1 1 eCH2eC
�
YeCH2e

Terminal double bond TDBM 6 1 1 CH2]CHYe
Terminal double bond TDBD 7 1 1 CHY]CHe

Site of transfer to polymer STP 8 1 1 eCH2eCHYeCH2e

Monomer 9 0 1 CH2]CHY

Primary radical 10 0 1 (CH3)2(CN)C
�

Initiator 11 0 1 (CH3)2(CN)CN]NC(CN)(CH3)2

Polymerized monomer unit 12 1 0 eCH2eCHYe
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For generality, no particular chemical system has been se-
lected for this case study. However, the chosen kinetic param-
eters should allow a simulation as far as possible close to the
real behavior of free-radical long-chain branching polymeriza-
tions. With this purpose, a basic set of kinetic parameters will
be established as presented in Table 3. Rate coefficients for the
reference monomer propagation, transfer to monomer, transfer
to polymer and propagation of TDBM are the same as cur-
rently accepted for vinyl acetate polymerization. Nevertheless,
termination is considered to occur by both mechanisms (com-
bination and disproportionation) and TDBDs are considered to
be active (in the present case with lower activity than TDBM).
With the exception of these few kinetic parameters, most of
the information needed for the model is missing. Therefore,
several of the 59 kinetic parameters will be guessed based
on qualitative considerations. It is not our purpose to discuss
in depth the complex problem of kinetic modeling and param-
eter estimation for these chemical systems but to show that
the present method is capable of taking into account their
complexity and hopefully stay flexible enough to incorporate
further reactions.

Going along the sequence of radicals FR1 to FR5, a de-
crease in reactivity is plausible. The kinetic parameters for
the propagations of monomer, TDBM and TDBD with the dif-
ferent radicals have been established using the following sim-
ple rules: kpi1 ¼ kp=i, kpi2 ¼ k�p=i, kpi3 ¼ k��p =i with i¼ 1,.,5.
Owing to the decrease of reactivity of the double bonds in the
sequence monomer: TDBM: TDBD, a similar rule was ap-
plied to their initiation reactions: ki1=ki ¼ 1, ki2=ki ¼ 0:8
and ki3=ki ¼ 0:6. Reactions of transfer to monomer and trans-
fer to polymer are supposed to be affected by the decrease in
the reactivity of the free radicals in a similar way: kfmi ¼ kfm=i
and kfpi ¼ kfp=i. As terminations are bimolecular reactions in-
volving the different kinds of radicals, their rate coefficients
were considered to obey the following rules: ktcij ¼ ktc=ij
and ktdij ¼ ktd=ij with i¼ 1,.,j and j¼ 1,.,5.

The simulations performed with this case study are presented
in Figs. 6 and 7. A batch reactor starting with [M]0¼ 10.83 and

Table 3

Representative set of kinetic parameters in a radical polymerization with

terminal double bonds branching and transfer to polymer

Kinetic parameter Relative value Absolute value

kp 1.17� 104 dm3 mol�1 s�1

kt 2.5� 108 dm3 mol�1 s�1

kd 9� 10�6 s�1

f 0.5

kp
* K1 ¼

k�p
kp
¼ 0:8 9.36� 103 dm3 mol�1 s�1

kp
** K2 ¼

k��p
kp
¼ 0:6 7.02� 103 dm3 mol�1 s�1

ki Ci ¼ ki

kp
¼ 1:0 1.17� 104 dm3 mol�1 s�1

kfm CM ¼ kfm

kp1
¼ 1:9� 10�4 2.223 dm3 mol�1 s�1

kfp CP ¼ kfp

kp1
¼ 1:2� 10�4 1.404 dm3 mol�1 s�1

ktd Ctd ¼ ktd

kt
¼ 0:5 1.25� 108 dm3 mol�1 s�1

ktc Ctc ¼ ktc

kt
¼ 0:5 1.25� 108 dm3 mol�1 s�1
[I]0¼ 10�3 mol dm�3 was always considered. Again, a first im-
portant check was done by considering a linear radical polymer-
ization. This system can be simulated by deleting from the
general kinetic scheme all mechanisms of branching
(K1¼ K2¼ CP¼ 0) or by considering another simplified ki-
netic scheme. With the last option a lower CPU time is needed
but the results obtained are obviously the same. It is important to
note that the expected result for z-average characteristic ratio
ðR2

g=ðb2xzÞ ¼ 1=6Þ was again obtained.
Three different non-linear systems were considered in this

case study. In the first one, all above discussed mechanisms
of branching are present and both mechanisms of termination
are supposed to occur with equal probability (Ctc¼ Ctd¼ 0.5).
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In this case, gelation occurs when the monomer conversion is
0.83. A different system was simulated by supposing that only
termination by disproportionation is possible and that TDBDs
are inactive (Ctd¼ 1� Ctc¼ 1, K2¼ 0). In this case no gela-
tion is predicted. A third system results when termination oc-
curs exclusively by combination (Ctc¼ 1) with a predicted
monomer conversion of 0.81 at the gel point (see Fig. 6). It
is very interesting to observe the effect of these mechanisms
of branching in the dimension of polymer chains as illustrated
in Fig. 7. The relation between xz and Rg is again not the same
before and after gelation as a consequence of the non-random-
ness of these polymerization systems. These kinds of differ-
ences can be used in practice to investigate the architecture
and the formation kinetics of this kind of polymers. Notice
that Mw (or xw) is also available from the predictions of the
present method and therefore, a full experimental study of
the formation kinetics of these networks should be possible
by using light scattering [36].

5. Conclusions

In this work, a general kinetic method was presented for the
prediction of mean square radius of gyration of tree-like poly-
mers with Gaussian chains. The major distinctive features of
this analysis are:

� The generality of the method here presented allows the
prediction of the mean square radius of gyration for differ-
ent irreversible polymerization systems with a common
tool (a kind of interpreter for irreversible polymerization
systems);
� This simulation method avoids a set of approximating con-

ditions with widespread use in modeling of non-linear po-
lymerizations, namely in radical polymerizations, such as
the absence of multiple radical sites per molecule and the
pseudo-steady state for radical concentrations;
� The present method allows the extension of the prediction

of mean square radius of gyration past gel point;
� The consideration of detailed kinetic schemes with distinc-

tion of several active species (e.g. macro-radicals) and
chemical reactions is possible and therefore more realistic
polymerization systems can be simulated.

The generality of the present method was shown by
carrying out the simulation of three completely different poly-
merization systems: step-growth polymerizations with the for-
mation of hyperbranched polymers, ionic polymerization of
mono- and divinyl monomers and a radical polymerization
with terminal branching and transfer to polymer.

With the step-growth systems considered, it was possible to
confirm the reliability of the simulations of the present method
throughout its comparison with analytical solutions or alterna-
tive methods for the prediction of the mean square radius of
gyration for hyperbranched polymers. With these simple
chemical systems it was possible to easily extend the predic-
tion of Rg beyond the gel point.
Supplementary tests on the reliability of the present predic-
tions were carried out with the ionic polymerization of a mono-
vinyl monomer with different relative initiation rates. The
more complex system consisting in the anionic polymerization
of mono- and divinyl monomers with gel formation was also
analyzed. In this case the influence of some side reactions
such as hydride elimination and transfers to vinylene groups
was considered.

The usefulness of this approach becomes undeniable when
complex systems such as a radical polymerization with termi-
nal branching and transfer to polymer are tackled. In this case,
a detailed kinetic scheme with the distinction of five macro-
radicals, two kinds of terminal double bonds and a site of
transfer to polymer was considered. In spite of the large num-
ber of chemical species and reactions, it was shown that it is
possible to obtain the predictions of Rg before and after gela-
tion. The influence of the kinetic scheme on the mean square
radius of gyration of the resulting polymers has been dis-
cussed. Due to the large number of ordinary differential equa-
tions involved and their stiffness, the CPU time needed for
these computations is much higher than with the other poly-
merization systems considered in this work. The ability of
the present method to predict the variation of Rg with the
reaction time for complex polymerization systems may be
used in practice to make comparisons with experimental
values of Rg obtained by light scattering. In this way, it is pos-
sible to improve the knowledge about the architecture and the
kinetics of formation of non-linear polymers.

Another possible use of this method is to carry out confir-
mation checks of more elaborate predictions of polymer struc-
ture (such as the results of Monte Carlo simulations).
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Appendix A

Molecular size distribution for a restricted polymer popula-
tion in the A3 self-polycondensation

The molecular size distribution in the A3 self-polyconden-
sation in a batch reactor will be determined by considering
the restricted polymer population formed by the monomer,
dimer, trimer and the two isomeric tetramers. The rates of for-
mation and consumption of these small species can be readily
found by taking into account all the possibilities of reaction
between molecules. In this way the following set of ordinary
differential equations results for a batch reactor:

d½A�
dt
¼�k½A�2 (A-1)
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d½P1�
dt
¼�3k½A�½P1� (A-2)

d½P2�
dt
¼�4k½A�½P2� þ

9

2
kð½P1�Þ2 (A-3)

d½P3�
dt
¼�5k½A�½P3� þ 12k½P1�½P2� (A-4)

d½P4l�
dt
¼�6k½A�½P4l� þ 8kð½P2�Þ2þ12k½P1�½P3� (A-5)

d½P4b�
dt
¼�6k½A�½P4b� þ 3k½P1�½P3� (A-6)

In the above equations, [A] represents the concentration of
active end groups, k is the correspondent rate coefficient and
[P1], [P2], [P3] are the mole concentrations of monomer, dimer
and trimer, respectively. The concentrations of the two isomers
of the tetramer are represented by [P4l] (linear) and [P4b]
(branched) (their structure is depicted in Fig. 8).

The initial conditions for the system of differential equa-
tions Eqs. (A-1)e(A-6) are: [A]jt ¼ 0¼ [A]0, [P1]jt ¼ 0¼ [A]0/3,
[P2]jt ¼ 0¼ [P3]jt ¼ 0¼ [P4l]jt ¼ 0¼ [P4b]jt ¼ 0¼ 0. It is possible
to obtain an analytical solution for the problem Eqs. (A-1)e
(A-6) by introducing the change of variable:

dq¼ k½A�dt (A-7)

followed by the sequential resolution of the system of differen-
tial equations, using the method of the integrating factor:�
A
�
¼ ½A�0 e�q (A-8)

½P1� ¼
½A�0

3
e�3q (A-9)

½P2� ¼
½A�0

2

�
1� e�q

�
e�4q (A-10)

�
P3

�
¼ ½A�0

�
1þ e�2q� 2e�q

�
e�5q (A-11)

�
P4l

�
¼ 2½A�0

�
1� 3e�q� e�3qþ 3e�2q

�
e�6q (A-12)

½P4b� ¼ ½A�0
�

1

3
� e�q� e�3q

3
þ e�2q

�
e�6q (A-13)

P1 P2 P3 

P4l P4b 

Fig. 8. The structures of monomer (P1), dimer (P2), trimer (P3) and the two

isomers of the tetramer (P4l and P4b) considered in the self-reaction of A3.
Note that from Eq. (A-8), the end-group conversion, a ¼
1� ½A�=½A�0, is related to the variable q by q ¼ �lnð1� aÞ
and therefore, the concentrations of the considered polymer
species can be analytically evaluated along the reaction.

Considering that mass points with M¼ 1 are located at the
repeating units and that the length of the link is constant (b¼ 1
for simplicity), using the definition (see Eq. (14) for instance),
the mean square radius of gyration of each kind of polymer
molecule is: hR2

gi1 ¼ 0, hR2
gi2 ¼ 1=4, hR2

gi3 ¼ 4=9, hR2
gi4l ¼

10=16 and hR2
gi4b ¼ 9=16. It is therefore possible to calculate

the real molecular size distribution of this population. This re-
sult is presented in Fig. 9, where the z-distribution means
i2½Pi�=

P
i2½Pi� and can obviously be obtained from the previ-

ous equations for each value of end group conversion consid-
ered. Note that in the real distribution of radius of gyration, the
two isomers of the tetramer are distinguished.

In Eq. (33), all isomers with same molecular masses are
lumped into a single species with global concentration equal
to the sum of the individual concentrations. Its mean square
radius of gyration is the number average of the mean square
radius of gyration of these population of isomers, as can be
easily shown from Eqs. (14) and (33) [32]. In this particular
example, the effect can be observed in Fig. 9 where the lump-
ing does not affect the distribution of the dimer and trimer
(there are no isomers in those classes) but the tetramer obvi-
ously includes the two isomers. For the particular case pre-
sented the average square radius of gyration of [P4], the sum
of [P4l] and [P4b], is the number average of the mean square
radius of the two isomers with a numerical value of about
0.6161.

For general polymerization systems, the lumped distribu-
tion of radius of gyration can be obtained using the present
method through inversion of Eq. (33). The real distribution
is not available because the method intrinsically lumps all iso-
mers with the same counts of groups into a single species.
Nevertheless, it should be mentioned that the z-average radius
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of gyration predicted by this method is the correct z-average of
the real molecular size distribution. In fact from Eqs. (14) and
(33) it is easily proved that the z-average radius of gyration can
be calculated from the real or the lumped molecular size dis-
tributions. This is also illustrated in Fig. 9 for the simple
chemical system considered in this example.

Appendix B. Supplementary data

Supplementary data associated with this article can be
found in the online version, at doi:10.1016/j.polymer.2007.
01.033.
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